
The North DiCOVA 2021 Challenge System Report

Isabella Södergren1, Maryam Pahlavan Nodeh2, Konstantina Nikolaidou2, Prakash Chandra
Chhipa2, György Kovács2

1Digital Services and Systems,Luleå University of Technology, Luleå, Sweden
2EISLAB Machine Learning, Luleå University of Technology, Luleå, Sweden

sasde-5@student.ltu.se1, firstname.middlename.lastname@ltu.se2

Abstract

The detection of COVID-19 is, and will foreseeably remain
a crucial challenge in the world. This makes the development
of potential tools for this task important. One possible approach
is on the confines of speech and audio processing, detecting
potential COVID-19 infections based on recordings of cough
sounds. In our work we set out to propose a simple yet robust
method based on well-known features, and classical machine
learning methods. For this, we approached the task using the
widely-used ComPare 2016 feature set, and classical machine
learning models, such as Random Forests, Support Vector Ma-
chines (SVMs)). Furthermore, to exploit the complementary
nature of different models, we also applied ensembling. Our re-
sults showed that our simple approach lead to a robust model,
that also produced results on the test set that (besides exceeding
the baseline), attains a competitive performance, providing an
AUC score of 85.21 on the test set. In the future, our goal is
to complement the predictions of these models with more ad-
vanced convolutional models from the field of computer vision.
Index Terms: COVID-19, acoustics, machine learning, respi-
ratory diagnosis, healthcare

1. System Description
1.1. Methodology Overview

The ongoing challenge of the COVID-19 pandemic renders the
problem of cough classification, and thus challenges in the sub-
ject [1] urgent, and topical. For this we have dedicated sig-
nificant effort to this task. One important lesson we kept in
our mind for this from earlier challenges was the importance
of combining various models. Another guiding principle was
the utility of classical machine learning models, particularly in
scenarios where the amount of data available is limited. For
this, we have taken the simple approach of utilizing a well-
known, easily applicable feature set, the Compare 2016 feature
set [2] that can be extracted from audio files using the OpenS-
mile toolkit [3]. Then we trained classical machine learning
models (RandomForests and Support Vector Machines) using
the resulting data, using the five-fold cross-validation provided
by the organisers of the challenge. We optimized the meta-
parameters of these models based on the five validation sets,
selecting those that provided the best average Area Under Curve
of Receiving Operating Characteristics. Then, for each method
we got the final probability predictions by averaging the predic-
tions of the five models trained using the five different folds.
Lastly, we combined our two selected models by taking the
weighted average of their average predictions, as a further layer
of ensembling. As a baseline for comparison, we also trained a
multi-layer perceptron on the same features.

1.2. Pre-processing

Z-score normalization Z-score normalization is a method of
normalizing data that avoids the outlier issue by controlling the
data distribution using mean and standard deviation.

(x− µ)/σ (1)

x is feature, µ is the mean value, and σ is the standard deviation
of the feature. It is a serve as a metric for comparing quantitative
features of different scales belonging to different distribution.
This characteristic makes it good fit for as normalization tech-
nique during feature developments. By applying the z score on
features of open smile, It redefined the feature space with bal-
anced representation and regularized the feature values scales
thus allow models to learn quick and robust. It also prevented
the feature domination during learning which improve model
performance generalization with uniform feature dependencies.
We applied z-score normalization on the feature set before us-
ing the CompParE 2016 features in Support Vector Machines or
Multi-layer perceptrons, but not for Random Forests.

1.3. Feature Description

The open-source Speech and Music Interpretation by Large-
space Extraction (openSMILE [3]) toolkit is a framework that
automatically extracts sound descriptors (low-level features)
such as frame energy, voice intensity/loudness, band spectra,
loudness approximated from auditory spectra, fundamental fre-
quency, spectral features, psychoacoustic sharpness, spectral
harmonicity, and many more. OpenSMILE is a real-time (i.e.
able to extract features in real-time) online and offline tool for
processing large datasets. Its input can be from different audio
formats (including the Free Lossless Audo Codec - flac - format
used in the DiCOVA competition), and different operations (e.g.
normalization, modification) can be performed in the process-
ing stage. In our work we used the python implementation [4]
of this tool to extract the 6373 features of the ComParE 2016
feature set [2] from each audio recording of coughs.

1.4. Classifier Description

For the classification task, we used three different classifiers
implemented through scikit-learn python library [5]: Support
Vector Machines (SVMs), Random Forests, and Multi-layer
Perceptron (MLP). For all classifiers, we trained all folds with
different combinations of parameters, and then we select the
parameter setting that provided the best AUC score on average
on the five validation sets.

Support Vector Machines are commonly used in classifica-
tion, regression, and outlier detection tasks. SVMs will classify
data points by finding a hyperplane in n-dimensional space,



where n is the number of features, that separates the classes.
For SVMs, we optimize the regularization parameter C, the
kernel type, the degree of the polynomial kernel function when
polynomial kernel is chosen, the kernel coefficient gamma, and
the multipliers/weights of parameter C for each class.

Multi-layer Perceptron is a class of feed-forward ANNs,
capable of learning non-linear separations. We try different
values of the following parameters for the MLP classifier:
hidden layer size, the activation function for the hidden layer,
the weight optimizer, the regularization parameter in the form
of penalty alpha, the learning rate initialization and update,
the momentum for gradient descent update when used, and
Nesterov momentum when Stochastic Gradient Descent with
momentum larger than 0 is used.

Random Forests are based on random decision trees and
scikit’s implementation combines classifiers by averaging their
probabilistic prediction, while traditional random forests let
each classifier vote for a single class. We optimize the num-
ber of trees, the split criterion, the maximum depth of the tree,
the use of bootstraps when building trees, the use of out-of-
bag samples, and the weights associated with the classes. We
present the final optimized parameters values in Table 2.

Table 1: Meta-parameters used for the different sklearn models
applied

Method Parameters

RandomForest

bootstrap: False
class weight: None
criterion: entropy
max depth: 24
n estimators: 257
oob score: False

SVM

C: 2.6499182736174296
class weight: None
degree: 2
gamma: scale
kernel: rbf

MLP

activation: tanh
alpha: 0.0008091752859707717
hidden layer size: 300
learning rate: constant
learning rate init: 0.046884249347153434
momentum: 0.2467559334514141
nesterovs momentum: True
solver: sgd

1.5. Results

Results of our experiments (for the validation and test set) are
listed in Table 2. As can be seen in Table 2, both the SVM and
the Random Forest produced markedly higher scores than the
baselines (one provided by the task organizers, and one - MLP
- trained by us). We can also see that while our MLP baseline
attained higher scores on the validation set, our other methods
outperformed it on the test set, which we attribute to their better
generalization on the small dataset available. Overall, we can
say that our methods seem to show a good generalization ability
as well as attain competitive scores on the test set.

Table 2: ROC AUC scores attained using the various machine
learning models on the validation and test set

Method ROC AUC score
Validation Test

RandomForest 71.73 82.15
SVM 73.29 85.05

MLP 97.10 75.65
Baseline 68.54 69.85

1.5.1. Ensembling

Lastly, we have combined our RandomForest and SVM mod-
els by taking the weighted average of their probability predic-
tions. Here, to avoid overfitting, we examined only five weight-
ing schemes. Results of these experiments on the validation set
can be seen in Figure 1. Based on these results, our final com-
bination took the predictions of the RandomForest into account
with a weight of 0.25, and consequently, it took the predictions
of the SVM model with a weight of 0.75. Using this combina-
tion, we managed to marginally improve our results on the test
set from 85.05 to 85.21.

0,73297409

0,7411399
0,74018653

0,73367876

0,71726425

0,705

0,71

0,715

0,72

0,725

0,73

0,735

0,74

0,745

0.00, 1.00 0.25, 0.75 0.50, 0.50 0.75, 0.25 1.00, 0.00

Average ROC AUC score on valida on set

Figure 1: Weights for the predictions originating from the Ran-
dom Forest (first number), and SVM (second number) models

2. References
[1] A. Muguli, L. Pinto, N. R., N. Sharma, P. Krishnan, P. K. Ghosh,

R. Kumar, S. Ramoji, S. Bhat, S. R. Chetupalli, S. Ganapathy, and
V. Nanda, “DiCOVA challenge: Dataset, task, and baseline system
for covid-19diagnosis using acoustics,” https://arxiv.org/pdf/2103.
09148.pdf, 2021.

[2] B. W. Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgoon,
A. Baird, A. C. Elkins, Y. Zhang, E. Coutinho, and K. Evanini,
“The INTERSPEECH 2016 computational paralinguistics chal-
lenge: Deception, sincerity & native language,” in Interspeech
2016, 17th Annual Conference of the International Speech Com-
munication Association, San Francisco, CA, USA, September 8-12,
2016, N. Morgan, Ed. ISCA, 2016, pp. 2001–2005.

[3] F. Eyben, M. Wöllmer, and B. W. Schuller, “Opensmile: the
munich versatile and fast open-source audio feature extractor.”
in ACM Multimedia, A. D. Bimbo, S.-F. Chang, and A. W. M.
Smeulders, Eds. ACM, 2010, pp. 1459–1462. [Online]. Available:
http://dblp.uni-trier.de/db/conf/mm/mm2010.html#EybenWS10

[4] J. Wagner, C. Hausner, and H. Wierstorf, “Python wrapper for com-
mon opensmile feature sets,” https://pypi.org/project/opensmile/,
2021.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine Learning in Python ,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.


