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Abstract
Cough sounds as a descriptor have been used for detecting mul-
tiple respiratory tract infections based on its intensity, dura-
tion of intermediate phase between two cough sounds, repeti-
tions, dry vs wet etc. However, COVID-19 diagnosis using only
cough sounds is challenging because of cough being a common
symptom among many non COVID-19 health diseases and lack
of availability of enough samples belonging to COVID-19 pos-
itive subjects. Towards this direction we propose two different
approaches. In our first approach, we explore the robustness
of multi-domain representation by performing the early fusion
over a wide set of temporal, spectral and tempo-spectral hand-
crafted features, followed by training a Support Vector Machine
(SVM) based classifier. In our second approach, we employ a
contrastive loss function to learn a latent space from low-level
Mel Filter Cepstral Coefficients (MFCCs) where representa-
tions belonging to samples having similar cough characteristics
are closer. This helps learn representations for the highly varied
COVID-negative class (healthy and diseases other than COVID-
19), by not limiting its representations fall into a single cluster,
rather multiple smaller clusters. Using only the data provided
as a part of the challenge, we compare our performance with the
provided baseline, our first approach achieves an absolute im-
provement of 0.74% and 1.07%, whereas our second approach
shows an improvement of 2.09% and 3.98% ,over the blind test
and validation set, respectively.
Index Terms: COVID-19, acoustics, machine learning, respi-
ratory diagnosis, healthcare

1. System Description
Unlike detection of other respiratory tract infections, while de-
tecting COVID-19 infections, it is necessary to be able to iden-
tify markers that discriminate beyond forced cough (simulated)
and ailment cough. The large variations within the COVID-
negative (healthy and diseases other than COVID-19) sam-
ples, make it difficult to learn representations into two non-
overlapping clusters. Moreover, most COVID-19 datasets in-
clude high imbalance among the COVID-positive and healthy
subjects. Fig. 1 represents the framework of our proposed ap-
proach.

1.1. Methodology Overview
In order to address the above mentioned challenges, we pro-
pose a few-shot based approach such that the classification task
is now converted to a 2-way N -shot learning problem where
the ways represent 2 classes, i.e. COVID-positive and COVID-
negative, and N shots represents, N audio samples each from
both the classes, provided as reference samples. Each query
sample is then inferred depending on the distance between the
learned representations of query and the provided reference
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Figure 1: Framework

samples. Interestingly, these representations are learned using a
episodic triplet loss, which enables the model to learn the intra-
clusters among the highly varied COVID-negative class. More-
over, during training the loss in each episode is computed w.r.t
to a fixed number of shots for each class, thereby maintaining a
balance between the number of samples for both the classes [1]
[2]. It is important to note that, in a supervised approach each
training sample is equivalent to a single training configuration,
i.e. the same sample shown multiple times to a model (during
training) will make the model overfit (memorize it), however,
in this case a single sample may yield different loss values (and
hence different possibilities of attaining convergence), depend-
ing on the reference samples (also called as support set) pro-
vided with it in each training iteration (also called as episode).

In addition to the above approach, we also followed a
feature-based machine learning technique where we explored
the robustness of multi-domain cough biomarkers with a sim-
ple Support Vector Machine (SVM) classifier. Here, we exper-
imented with a wide set of handcrafted features capturing the
temporal, spectral and tempo-spectral descriptors (discussed in
detail in Section 1.3) to learn the cough patterns that can dis-
criminate between COVID-positive and COVID-negative sam-
ples.

1.2. Pre-processing
Analysing the spectrograms of audio waveforms (see Fig. 2),
we observe that majority of the samples show high spectral
spread under 8 kHz. Thus, we resampled each audio at 16 kHz
using librosa [3] as our audio processing library.

1.2.1. Localizing cough-relevant regions using a pre-trained
Audio Event Detection (AED) model

Owing to its crowdsourced nature, the provided data consists
of outliers in terms of both, the duration of the samples (see
Fig.3) and the amount of undesirable audio content other than
cough-related sounds (i.e. background noise, human speech
etc) present. Towards this direction, we utilized a pre-trained



Figure 2: Spectrogram of a positive and a negative cough signal
sampled at 44.1 kHz

(a) Original (1040 samples) (b) Pre-processed (1073 samples)

Figure 3: Variation in duration of samples. The points marked
using circles depict the outliers (on the basis of the duration).

AED model, YAMNet [4], trained on generic audio events (in-
cluding cough sounds), to localize two types of regions, namely,

• COUGH SOUNDS events in the same subtree of actual
’cough’ event from knowledge graph 1, i.e. semantically
similar, ex: throat clearing + other events (not in the sub-
tree) but acoustically similar, ex: plop.

• OTHER all audio events other than those mentioned above.

Once individual regions are obtained, a smoothing opera-
tion is applied to remove discontinuous regions (regions lesser
than 500 ms). We specify two criteria based on the number
of detected regions and their corresponding time durations, (a)
no COUGH SOUNDS region detected throughout the duration of
the audio sample, and (b) detected OTHER region is more than
4 secs. Audio files satisfying these criteria, are further split into
smaller audio samples (to be used as individual training sam-
ples) based on detected regions. It is important to note, that this
even filters smaller duration audio files with undesirable audio
content. This gives a a total of 1073 samples, fairly consistent
across their duration (see Fig. 3b) as well as inclusion of audio
content relevant to cough sounds.

1.3. Feature Description

1.3.1. Discrete Wavelet Transformation (DWT) Based Tempo-
spectral Descriptors
DWT is a signal decomposition technique that represents the
temporal changes in spectral dynamics of a signal. Cough
sounds, being non-stationary in nature, can be better repre-
sented by tempo-spectral structure that captures the dynamic
changes in signal. Here, we use db3 as a mother wavelet due
to their efficient time frequency localization properties in cough
sound analysis [6, 7]. The choice for level of decomposition
is based on prominent frequency components of the signal.

1please refer to Audioset ontology at https://research.
google.com/audioset/ontology/index.html.

Table 1: Performance result of our approach on validation and
test set

Approach Validation Test
AUC Sensitivity Specificity AUC Sensitivity Specificity

Baseline 68.89 81.6 43.42 69.85 80.49 53.65
1 69.96 86.4 39.38 70.59 80.49 45.83
2 72.87 92.0 39.79 71.94 80.49 47.40

Since cough sounds are known to have more energy in lower
frequencies (varying from 20 Hz - 50 Hz in different studies)
[8, 9, 10] , we decomposed the signal till 10th level using Py-
Wavelets tool [11]. Thereafter, we extract the set of six features
for each frequency band, namely, Energy, Entropy, Root Mean
Square (RMS), Recoursing Energy Efficiency (REE), Logarith-
mic REE (LREE), Absolute Logarithmic REE (ALREE) [12].
Thus, we get a 60-dimensional feature vector.

1.3.2. Spectral descriptors
In order to capture the spectral properties in a cough sound we
first compute 64 low level descriptors (LLDs) with 20 ms of
window length and 10 ms of overlap, followed by computing
the delta and delta-delta coefficients in order to extract the tem-
poral mutual information among the adjacent frames. A list
consists of the LLDs: 13 Mel-Frequency Cepstral Coefficients
(MFCC) components, Zero-crossing, Spectral Centroid, Roll-
off Frequency, Spectral Flux, Spectral entropy, Spectral Spread,
12 Chroma components, Jitter (ratio, percentage, factor), 26
Mel Spectrograms, Fundamental Frequency (F0), Log energy,
Entropy. The usage of these features are well studied in previ-
ous works on cough sound detection [13, 14, 15, 16, 17]. All
LLDs are smoothed over time with a symmetric moving aver-
age filter with length of 3 frames. To capture the distributions
beyond the mean, we further computed high-level descriptors
(HLDs), statistical features over LLDs. A complete list of 25
HLDs is: mean, median, range, maximum, minimum, position
of minimum and maximum, percentile, 1st, 2nd and 3rd quar-
tile, interquartile range, standard deviation, variance, skewness,
kurtosis, linear and quadratic regression coefficients. In total,
we get a 4800-dimensional feature vector. We use pyAudio-
Analysis library to implement this feature set [18]

1.3.3. Temporal descriptors
To capture the temporal characteristics of a cough signal, we
extract the hjorth parameters (mobility and complexity) which
have been proved to be a powerful biomarker in respiratory
sounds [19]. Motivated by the wide usage of fractal dimension
in lung sound analysis [20, 9], we compute the Petrosian Frac-
tal Dimension (PFD) and Higuchi Fractal Dimension (HFD)
of cough signals. Furthermore, we use Detrended Fluctuation
Analysis (DFA) that captures the self-similarity within a time-
series over a longer period, whose application has been explored
in respiratory sounds [21]. We use an open source python mod-
ule, PyEEG [22], to compute this 5-dimensional feature vector.

1.4. Classifier Description
• Approach-1 : In this approach, we perform an early fu-

sion over a wide set of handcrafted features (as discussed
in Section 1.3) to get a multi-domain representation
of a cough signal. This results into 4865-dimensional
(60+4800+5) feature vector. Further, we train a SVM
with RBF kernel on the resultant feature vector. To pre-
vent biased learning as a result of high imbalance in the
data (COVID-positive=50, COVID-negative=772), we
assign a higher weight to the minority class and lower
to the majority class within the cost function. For this,

https://research.google.com/audioset/ontology/index.html.
https://research.google.com/audioset/ontology/index.html.


we use an utility provided by python’s sklearn which
automatically adjusts weights inversely proportional to
class frequencies in the data.

• Approach-2 : In this approach we use features similar to
the baseline approach [23], i.e. 39 dimensional MFCCs
combined with the delta and delta-delta features. Ad-
ditionaly, for an audio sample x with frame-level fea-
ture vectors, xi ∈ R117, features from w succeeding
and w preceeding frames are concatenated. In our ex-
periments, we use w=3 and thus, our input to the model
is, x̄i ∈ R(7∗117) (7:{3+1+3}) vector. The embedding
block (referred as fφ(.) in [2]) consists of a stack of 2
dense layers, with 800, 512 hidden units each with ReLU
activation. During training, in each episode a triplet loss
is computed using the output from the last dense layer as
the latent representation. Post-training, the output of last
dense layer is used as embeddings to train a logistic re-
gression classifier. Similar to the baseline approach, our
model provides the frame-level scores which are then av-
eraged to obtain a prediction for the entire audio sample.
We use number of shot as 5 (i.e. each training episode
consists of 5 reference samples from each class) and
margin = 0.5, where margin defines the maximum dif-
ference between the euclidean distances between anchor
and positive sample, and between anchor and negative
sample (discussed in [2]).

1.5. Results
We compare our approaches with the provided baseline (repli-
cated using the provided scripts). As can be seen from table 1,
our both approaches surpass the baseline when evaluated over
the validation samples as well as the blind test samples. We hy-
pothesize, this is primarily because of two reasons, firstly, be-
cause of the robustness of handcrafted multi-domain represen-
tation in our first approach and the balanced episodes generated
as a part of the few-shot pre-training accompanied by the triplet
loss function which enables the intra class learning within the
highly varied COVID-19 negative class in our second approach.
Secondly, we use a balanced subset of the provided validation
folds (since the provided validation folds are skewed), to decide
on an early stopping criteria that guides the model convergence.
It is important to note that in both our approaches we use the
samples provided as a part of the DiCOVA challenge, and do
not use any external data. The performance of our approaches
could be further improved with access to larger databases with
a fairly equal class distribution.
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