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Abstract
A quick, efficient, and economic diagnosis procedure for
Covid-19 is the utmost need of the hour. According to a
recent study, asymptomatic individuals may not be entirely
free of symptoms due to the virus. Such individuals may differ
from healthy ones in the way they cough. The differences
in the coughing sounds are subtle and not distinguishable by
the human ear. However, these can be detected by Artificial
Intelligence. We take a deep learning approach to analyze
the acoustic dataset provided in Track 1 of the DiCOVA
2021 Challenge containing cough sound recordings of both
COVID-19 positive and negative individuals. We propose
a ConvNet model that performs the classification between
COVID-19 positive and negative with a notable AUC score of
87.07 on the blind test set provided by the same for unbiased
evaluations of the models. The model takes in 15 MFCC
features of the sound examples as input and produces the
probability score of the classification as output.

Index Terms: COVID-19, acoustics, machine learning, respi-
ratory diagnosis, healthcare, ConvNets

1. System Description
1.1. Methodology Overview

A duration of 7 seconds was chosen for each cough sound
recording. After the required trimming and padding of the ex-
amples, 15 Mel-Frequency Cepstral Coefficients (MFCCs) [1]
from each frame of the cough sound recordings were extracted
using the Librosa [2] python library and used as input features
into a Convolutional Neural Network (CNN) [3]. The following
subsections elucidate the entire procedure.

1.2. Dataset & Pre-processing

The dataset provided for Track 1 of the DiCOVA challenge is a
subset of the Project Coswara database[4] and contains a total
of approximately 1.36 hours of cough sound recordings from 75
COVID-19 positive subjects and 965 non-COVID-19 subjects.
The class distribution is shown in Figure 1.

A simple multi-layer neural network was trained using
the provided dataset. However, due to the high class imbal-
ance, present in the ratio of approximately 1:12 with respect
to COVID-19 positive-to-negative sounds, the performance was
poor. To overcome this, data augmentation was performed
on the COVID-19 positive sound recordings using the Python
Audiomentations1 package. Various classes of the package
namely, Compose, TimeStretch, PitchShift, Shift, Trim, Gain,
PolarityInversion were used with different probability param-

1https://pypi.org/project/audiomentations/0.
6.0/
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Figure 1: Class distribution of the provided dataset

eters to produce a wide range of audio recordings varied ac-
cording to different aspects that define an audio instance. The
data that was finally used for training after the augmentation has
an improved COVID-19 positive-to-negative ratio of approxi-
mately 1:3, as shown in Figure 2.

0 200 400 600 800 1000

Negative

Positive

965

315

Figure 2: Class distribution of the augmented dataset

1.3. Feature Description

The cough sound recordings of the augmented dataset have du-
rations ranging from approximately 0.79 seconds to 14.73 sec-
onds, as shown in Figure 3.

Mel-spectrograms can capture small changes in the lower
frequency regions since the Mel scale contains unequal spacing
in the frequency bands, unlike equally spaced frequency bands
in a typical frequency spectrogram [5]. Cough sounds con-
tain more energy in the lower frequencies [6] [6], consequently
MFCCs are an apt representation for the cough sound record-
ings [7]. For our model, 15 MFCC coefficients were chosen
per frame of each example since the lower end of the quefrency
axis of the cepstrum contains the most relevant information to
our particular task viz. formants, spectral envelope, etc. More-
over, choosing a higher number of cepstral coefficients would
proportionally increase the complexity of the model. This may
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Figure 3: Durations of all sounds of the augmented dataset

result in a higher variance problem since the dataset is not very
large. 15 MFCC coefficients were extracted from each frame
of each recording. A single frame contained 2048 samples. A
hop length of 512 frames was used for the framing window.
The 7 second sound samples resulted in MFCC matrices having
dimensions of 15x302. These matrices were then fed into our
proposed CNN model.

Additionally, the input dimensions must be constant across
all the training examples to be able to feed into any neural net-
work, thus implying that the MFCC matrices of all the examples
need to have a fixed dimensional size. To achieve this, each of
the examples must compulsorily have a constant duration result-
ing in a fixed number of samples when sampled with a constant
sampling rate.

Out of the 1280 recordings, it was observed that 804, 996,
1130 recordings have durations lesser than 5,6 and 7 seconds
respectively. Choosing the right duration for all the recordings
is crucial. Choosing a small duration will trim out important in-
formation from the sound. On the contrary, choosing the max-
imum duration i.e 14.73 seconds will result in a tremendous
amount of sparse values in the inputs. We chose 154350 sam-
ples, which is equivalent to 7 seconds when sampled at 22050
samples/second, as the constant number of samples for all the
examples because a good majority of the recordings have du-
rations lesser than 7 seconds. Losing valuable information is a
graver concern than having too many sparse values, since the
dataset is relatively small. Moreover, it can be observed from
Figure 3 that only a few recordings have durations above 10 sec-
onds, since the region above 10 seconds is sparsely populated
Only 150 examples had to be trimmed down while the others
had to be padded with zeros to make all 1280 recordings have a
constant number of samples of 154350.

1.4. Classifier Description

Out of all the models that we trained, a CNN having the ar-
chitecture as shown in Figure 4 was chosen as the final model.
After a commendable amount of iterations of hyperparameter
tuning, the following model produced the best results.

• Convolution layer with 64 filters, kernel size of 3x3,
stride of 1x1, valid padding followed by ReLU [8] ac-
tivation function, accepting an input shape of 302x15x1.

• Max pooling layer with a pool size of 2x2.

• Another Convolution layer with a kernel size of 2x2,
stride of 1x1, valid padding followed by ReLU activa-
tion function.

• Batch normalization layer [9]

Figure 4: Proposed CNN architecture

• The resultant shape was then flattened for the subsequent
fully connected layers.

• Fully connected layer having 256 units with kernel, bias,
and activity regularizers, followed by ReLU activation
function.

• A dropout layer [10] with a rate of 0.5.

• Another fully connected layer having 128 units with ker-
nel, bias, and activity regularizers, followed by ReLU
activation function.

• Another dropout layer with a rate of 0.3.

• Output layer having 1 neuron with Sigmoid activation.

The model was trained and evaluated using the stratified
k-fold cross-validation technique [11] with 5 folds, similar to
the number of folds provided in the challenge. The Adam op-
timizer [12] was used with an initial learning rate of 0.0001
while training on the examples which were further divided into
mini-batches of size 32, to implement mini-batch gradient de-
scent with respect to the binary cross-entropy loss function. The
training took place over 200 epochs per fold.

1.5. Results

Figure 5 depicts the ROC [13] curves obtained from the model
evaluation of each fold. The validation accuracy averaged over
all five folds resulted in 94.61% with a standard deviation of
2.62%. In a similar manner, a mean ROC-AUC score of 97.36
was achieved over the folds. Furthermore, for each fold, we fur-
ther evaluated confusion matrices for a decision threshold giv-
ing 80% sensitivity. Averaging these confusion matrices over
the folds for each model, the following approximate confusion
matrix was obtained as shown in Figure 6.

Lastly, the proposed model achieved a Test AUC score of
87.07 on the blind test set, hence claiming the top position of
the leaderboard before the competition deadline. This can be
claimed as a truly unbiased evaluation.
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Figure 5: ROC curves depicting model performance on each
fold
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Figure 6: Averaged model decisions computed at 80% sensitiv-
ity
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